

JMJD2A Mouse mAb

CatalogNo: YM0389

Key Features

Host Species

Reactivity

Applications

Mouse

Human

WB,IHC,IF,ELISA

MW

121kD (Calculated)

Recommended Dilution Ratios

WB 1:500-1:2000 IHC 1:200-1:1000 IF 1:200-1:1000 **ELISA 1:10000**

Not yet tested in other applications.

Storage

-15°C to -25°C/1 year(Do not lower than -25°C) Storage*

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. **Formulation**

I Basic Information

Clonality Monoclonal

Immunogen Information

Immunogen Purified recombinant fragment of human JMJD2A expressed in E. Coli.

Specificity JMJD2A Monoclonal Antibody detects endogenous levels of JMJD2A protein.

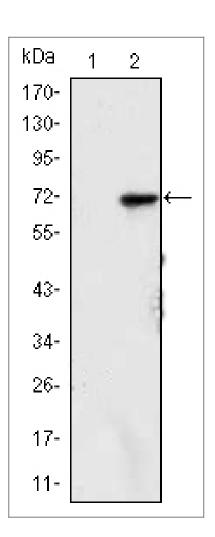
Target Information

Gene name KDM4A

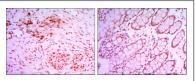
Protein Name

Lysine-specific demethylase 4A

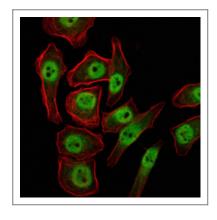
Organism	Gene ID	UniProt ID
Human	<u>9682;</u>	<u>075164;</u>
Mouse		Q8BW72;


Cellular Localization Nucleus.

Tissue specificity Ubiquitous.


Function

cofactor:Binds 1 Fe(2+) ion per subunit., Domain:The 2 Tudor domains recognize and bind methylated histone H3 'Lvs-4' residue, Double Tudor domain has an interdigitated structure and the unusual fold is required for its ability to bind methylated histone tails. Trimethylated H3 'Lys-4' is bound in a cage of 3 aromatic residues, 2 of which are from the Tudor domain 2, while the binding specificity is determined by side-chain interactions involving residues from the Tudor domain 1. The Tudor domains are able to bind trimethylated histone H3 'Lys-4', trimethylated histone H3 'Lys-9', di- and trimethylated H4 'Lvs-20'..Function:Histone demethylase that specifically demethylates 'Lvs-9' and 'Lvs-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively., similarity: Belongs to the JHDM3 histone demethylase family., similarity: Contains 1 ImiC domain., similarity: Contains 1 ImiN domain., similarity: Contains 2 PHD-type zinc fingers., similarity: Contains 2 Tudor domains., subunit: Interacts with histone deacetylase proteins HDAC1, HDAC2 and HDAC3. Interacts with RB and NCOR1. Interacts with HTLV-1 Tax protein., tissue specificity: Ubiquitous.,


Validation Data

Western Blot analysis using JMJD2A Monoclonal Antibody against HEK293 (1) and JMJD2A-hlgGFc transfected HEK293 (2) cell lysate.

Immunohistochemistry analysis of paraffin-embedded colon cancer tissues (left) and human larynx cancer tissues (right) with DAB staining using JMJD2A Monoclonal Antibody.

Immunofluorescence analysis of NTERA-2 cells using JMJD2A Monoclonal Antibody (green). Red: Actin filaments have been labeled with Alexa Fluor-555 phalloidin.

| Contact information

Orders: order.cn@immunoway.com
Support: support.cn@immunoway.com

Telephone: 400-8787-807(China)

Website: http://www.immunoway.com.cn

Address: 2200 Ringwood Ave San Jose, CA 95131 USA

Please scan the QR code to access additional product information:

JMJD2A Mouse mAb

For Research Use Only. Not for Use in Diagnostic Procedures.	Antibody ELISA Kits Protein Reagents
	Immunoway - 4 / 4